Abstract:

In situ Lu–Hf (laser ablation microprobe–inductively coupled plasma mass spectrometry (LAM-ICPMS)) and U–Pb (LAM-ICPMS, secondary ionization mass spectrometry (SIMS)) analyses of zircon, and whole-rock Sm–Nd isotope analyses were performed on rocks formed during magmatic events in three Archaean complexes in the Karelian Province of Fennoscandia (Pudasjärvi, Koillismaa and Iisalmi). These complexes have U–Pb ages ranging from 3.5 to 2.6 Ga. In Pudasjärvi, sparse xenocrystic cores give ages of 3.6–3.7 Ga and initial 176Hf/177Hf suggesting influence of a crustal component T ≥ 4.0 Ga (assuming a CHUR-like mantle source). Ages and Nd and Hf isotope patterns indicate magmatic events at 3.6–3.7 Ga (Siurua, Pudasjärvi with ≥4.0 Ga precursor), 3.2 Ga (Iisalmi, Koillismaa), 2.8 Ga (Pudasjärvi) and 2.7 Ga (Pudasjärvi, Iisalmi). In the Meso- and Palaeoarchaean events, there is no evidence of sources equivalent to present-day depleted mantle; such sources were, however, involved in the 2.8–2.7 Ga events. εHf and εNd are strongly correlated. Contrasts between the Archaean complexes indicate that they evolved separately until c. 2.7 Ga. The age and εHf pattern of ≤2.8 Ga rocks in the Karelian Province is compatible with a scenario in which the Karelia, Superior, Yilgarn and Slave cratons were part of a late Archaean supercontinent, but does not constitute proof of the existence of such a supercontinent.

Supplementary material:

U–Pb and Lu–Hf data are available at http://www.geolsoc.org.uk/SUP18430.

You do not currently have access to this article.