Carbon-isotope stratigraphy is a useful tool for stratigraphic correlation, especially for strata deposited during major perturbations of the carbon cycle that affected the marine, terrestrial and atmospheric reservoirs. For the Triassic–Jurassic boundary, effectively defined by a first-order mass extinction, major fluctuations in carbon-isotope values have been well documented, but these datasets have generally been derived from bulk-rock samples. Hence, the extent to which features of the isotopic curve reflect diagenetic alteration or changing proportions of constituent materials is unconstrained. Here, carbon- and oxygen-isotope data are presented from well-preserved oyster shells (Liostrea) comprising low-magnesium calcite, a mineral species relatively resistant to diagenetic alteration. Samples were obtained from Lavernock Point, Glamorgan, Wales, a coastal section close to a candidate stratotype for the base of the Jurassic at St Audrie's Bay, Somerset, England. The carbon-isotope signature from St Audrie's Bay, previously defined on the basis of analysis of bulk organic matter, is confirmed by our new data. Major features are (1) the upper part of an ’initial' negative isotope excursion in the lowest part of the section, followed by (2) a pronounced positive excursion, and (3) an extended ’main' negative isotope excursion in the highest part of the section. The data confirm that the carbon-isotope stratigraphy previously documented from bulk organic matter in SW England records the chemical composition of the contemporaneous seawater. Bulk carbonates sampled over the same interval near Lyme Regis, England, show similar trends to those from oyster calcite in the lower part of the study section, but there are more 13C-depleted values up-section. These lower values probably result from an admixture of primary and diagenetic carbonate. Palaeotemperatures calculated from oxygen-isotope values from Lavernock Point oyster shells are relatively cool at the beginning of the positive carbon-isotope excursion, and increased by up to 10 °C during the main negative carbon-isotope excursion. The new results are compatible with the view that positive carbon-isotope excursions correspond to times of low atmospheric carbon dioxide content, whereas negative carbon-isotope excursions correspond to times of high atmospheric carbon dioxide content, as is also found to be the case during the Early Jurassic (Toarcian) Oceanic Anoxic Event. The Mg/Ca and Sr/Ca ratios and δ18O of investigated Liostrea hisingeri show no correlation, supporting data from modern bivalves that indicate that incorporation of Mg and Sr is controlled mainly by factors other than temperature.

You do not currently have access to this article.