Abstract:

U–Pb ion microprobe investigations of zircons from gneisses, granites and migmatites of the pre-Devonian Smerenburgfjorden and Richarddalen Complexes constrain the tectonic evolution and origin of Svalbard's Northwestern Terrane. Field relationships combined with U–Pb age data indicate that a late Meso- to Neoproterozoic metapelitic protolith was intruded by Tonian (c. 960 Ma) granitoids and suggest that the entire Northwestern Terrane is underlain by early Neoproterozoic granitoids intruding older metasediments. Both rock types were later involved in Caledonian deformation, with subsequent migmatization and granite genesis at c. 435–420 Ma. Ages of inherited zircons in granites and migmatites reflect anatexis of this late Meso- to Neoproterozoic protolith, with zircon xenocrysts ranging in age from c. 1030 to 1820 Ma. Pronounced lithological, geochronological and tectonothermal similarities to NE Svalbard (Nordaustlandet) and the Krummedal supracrustal sequence of East Greenland suggest a strong correlation between Svalbard and East Greenland prior to Caledonian orogenesis.

Supplementary material:

Ion microprobe analytical methods, data table and zircon descriptions are available at http://www.geolsoc.org.uk/SUP18326.

You do not currently have access to this article.