Increasing political and social awareness of the importance of protecting the geological heritage is compelling geoscientists to consider new methods for reconciling conservation and exploration of their research sites. Terrestrial Light Detection And Range (LiDAR) imaging is an accurate method of collecting 3D spatial data that has so far been under-utilized in the geological sciences. This aim of this paper is to assess the value of integrated LiDAR and photogrammetric imaging as a tool for synchronizing scientific exploration with conservation of geological heritage sites.   Fumanya (Catalonia) is one of the most important Cretaceous tracksites in Europe, but the nature of exposure of the track-bearing surface has hindered quantitative documentation of the ichnites. Using integrated Light Detection And Range (LiDAR) imaging and photogrammetry it has been possible to construct high-resolution Digital Outcrop Models (DOM) of the tracksites. Photo-textured DOMs are a powerful visualization tool and function as fully 3D interactive databases that preserve information about the site that would otherwise be lost to erosion. LiDAR-derived DOMs have the potential to contribute profoundly to future geoconservation projects, particularly as a tool for documenting and monitoring heritage sites and promoting education and tourism. LiDAR scanning also provides sufficient resolution to perform robust quantitative analysis of dinosaur tracks.

You do not currently have access to this article.