Mass extinctions are recognized through the study of fossil groups across event horizons, and from analyses of long-term trends in taxonomic richness and diversity. Both approaches have inherent flaws, and data that once seemed reliable can be readily superseded by the discovery of new fossils and/or the application of new analytical techniques. Herein the current state of the Cretaceous-Tertiary (K-T) biostratigraphical record is reviewed for most major fossil clades, including: calcareous nannoplankton, dinoflagellates, diatoms, radiolaria, foraminifera, ostracodes, scleractinian corals, bryozoans, brachio-pods, molluscs, echinoderms, fish, amphibians, reptiles and terrestrial plants (macrofossils and palynomorphs). These reviews take account of possible biasing factors in the fossil record in order to extract the most comprehensive picture of the K-T biotic crisis available. Results suggest that many faunal and floral groups (ostracodes, bryozoa, ammonite cephalopods, bivalves, archosaurs) were in decline throughout the latest Maastrichtian while others (diatoms, radiolaria, benthic foraminifera, brachiopods, gastropods, fish, amphibians, lepidosaurs, terrestrial plants) passed through the K-T event horizon with only minor taxonomic richness and/or diversity changes. A few microfossil groups (calcareous nannoplankton, dinoflagellates, planktonic foraminifera) did experience a turnover of varying magnitudes in the latest Maastrichtian-earliest Danian. However, many of these turnovers, along with changes in ecological dominance patterns among benthic foraminifera, began in the latest Maastrichtian. Improved taxonomic estimates of the overall pattern and magnitude of the K-T extinction event must await the development of more reliable systematic and phylogenetic data for all Upper Cretaceous clades.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.