Abstract

Published length (L) and thickness (T) data on 135 laccolith and 21 granite intrusions define power-law relationships of the form L=kTa typical of systems exhibiting scale invariant (fractal) behaviour. Both data sets are characterised by an exponent a< 1 (0.88 ±0.1 for laccoliths and 0.80 ± 0.20 for plutons) that reflects an inherent preference for scale invariant tabular-sheet geometries. These power-law size relationships can be explained in mechanical terms by the need for an incoming magma sheet to travel laterally some distance before vertical thickening can occur. Sheet thickness is a function of available magma pressure which for an intrusion fed by a feeder dyke is proportional to the vertical magma transport distance.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.