Abstract

Epithermal veins in early Triassic turbidites on Hurd Peninsula are isotopically homogeneous over an area of 13 km × 2 km (mean δ34S = +2.2‰, 1σ= 1.7, n = 65) suggesting derivation from a deep circulating, neutral-chloride hydrothermal plume containing magmatic sulphur. The sense of fractionation (pyrite = +3.5, arsenopyrite = +3.2, sphalerite = +2.9, chalcopyrite = +2.5, galena = +0.9‰) and isotopic temperatures between 250 and 345°C suggest partial isotopic equilibration. Sulphides in massive dark carbonate/peperitic dyke breccias, with abundant magnetite, hematite and titanite and traces of barite, garnet, zircon and monazite are isotopically heavy (+7 to +14.9‰, n = 12) due either to dyke intrusion into the hydrothermal system resulting in degassing of H2S, or to a second, isotopically heavy and sulphate-bearing solution in fault zones along which dykes were subsequently intruded.

Vein sulphides in nearby Cretaceous volcanic rocks are similar to the epithermal system (mean = + 1.8‰, 1σ = 0.9, n = 6, pyrite = +2.0, chalcopyrite = +1.5), suggesting sulphur-derivation by degassing of sub-volcanic magma, or remobilization of disseminated sulphides during plutonism. Sulphide in an Eocene tonalite pluton is slightly 32S-enriched (mean = 0‰, 1σ = 1.9, n =7, molybdenite = +0.7, pyrite = +1.5, chalcopyrite = –2.6) and was exsolved directly from the cooling tonalitic magma.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.