Abstract

Garnet is widely found as a minor constituent in rocks of the Antarctic Peninsula Volcanic Group (APVG) of Trinity Peninsula. It occurs as conspicuous megacrysts, or in xenoliths within volcanic rocks of andesitic-rhyolitic composition and as detrital grains in the associated terrestrial sediments. It is also found as an accessory mineral in many plutonic rocks from the E coast of the Antarctic Peninsula. Evidence is presented to show that the garnet can be divided petrographically and chemically into two main groups: Type A: almandine-rich primary igneous garnet, and Type B: less almandine- and more pyrope-rich garnet as xenocrysts or included in xenoliths within the volcanic rocks.

Comparison with published experimental data on garnet occurrence in acidic igneous rocks suggests that high almandine-low spessartine garnet in volcanic rocks is a remnant phase of high pressure crystallization from magma at pressures of >7 kbar. Garnet with a higher pyrope content is regarded as xenocrystal in origin, having been derived from garnet-bearing country rocks at depth, either as accidental inclusions or through direct partial melting (restite) of the lower crust, and implies that a considerable thickness (>25 km) of crustal material was in existence before the generation of the Mesozoic magmatic arc. The origin of these calc-alkaline magmas may therefore be due, at least in part, to partial melting of pre-existing sialic crustal material.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.