## ABSTRACT

An induction coil sensor (ICS) is important for measuring low-frequency (DC-1kHz) geomagnetic field. The accuracy of the preamplifier is one key factor determining the performance of the sensor. But the preamplifier is susceptible to 1/*f* noise, offset voltage and drift. In order to eliminate these influences, a preamplifier circuit with three amplifier stages based on chopper technology has been designed, and its performance has been tested. The results show that: 1) The 1/*f* noise corner frequency is 3 mHz, the equivalent input voltage noise (EIVN) level of the circuit is |$\(\def\upalpha{\unicode[Times]{x3B1}}\)\(\def\upbeta{\unicode[Times]{x3B2}}\)\(\def\upgamma{\unicode[Times]{x3B3}}\)\(\def\updelta{\unicode[Times]{x3B4}}\)\(\def\upvarepsilon{\unicode[Times]{x3B5}}\)\(\def\upzeta{\unicode[Times]{x3B6}}\)\(\def\upeta{\unicode[Times]{x3B7}}\)\(\def\uptheta{\unicode[Times]{x3B8}}\)\(\def\upiota{\unicode[Times]{x3B9}}\)\(\def\upkappa{\unicode[Times]{x3BA}}\)\(\def\uplambda{\unicode[Times]{x3BB}}\)\(\def\upmu{\unicode[Times]{x3BC}}\)\(\def\upnu{\unicode[Times]{x3BD}}\)\(\def\upxi{\unicode[Times]{x3BE}}\)\(\def\upomicron{\unicode[Times]{x3BF}}\)\(\def\uppi{\unicode[Times]{x3C0}}\)\(\def\uprho{\unicode[Times]{x3C1}}\)\(\def\upsigma{\unicode[Times]{x3C3}}\)\(\def\uptau{\unicode[Times]{x3C4}}\)\(\def\upupsilon{\unicode[Times]{x3C5}}\)\(\def\upphi{\unicode[Times]{x3C6}}\)\(\def\upchi{\unicode[Times]{x3C7}}\)\(\def\uppsy{\unicode[Times]{x3C8}}\)\(\def\upomega{\unicode[Times]{x3C9}}\)\(\def\bialpha{\boldsymbol{\alpha}}\)\(\def\bibeta{\boldsymbol{\beta}}\)\(\def\bigamma{\boldsymbol{\gamma}}\)\(\def\bidelta{\boldsymbol{\delta}}\)\(\def\bivarepsilon{\boldsymbol{\varepsilon}}\)\(\def\bizeta{\boldsymbol{\zeta}}\)\(\def\bieta{\boldsymbol{\eta}}\)\(\def\bitheta{\boldsymbol{\theta}}\)\(\def\biiota{\boldsymbol{\iota}}\)\(\def\bikappa{\boldsymbol{\kappa}}\)\(\def\bilambda{\boldsymbol{\lambda}}\)\(\def\bimu{\boldsymbol{\mu}}\)\(\def\binu{\boldsymbol{\nu}}\)\(\def\bixi{\boldsymbol{\xi}}\)\(\def\biomicron{\boldsymbol{\micron}}\)\(\def\bipi{\boldsymbol{\pi}}\)\(\def\birho{\boldsymbol{\rho}}\)\(\def\bisigma{\boldsymbol{\sigma}}\)\(\def\bitau{\boldsymbol{\tau}}\)\(\def\biupsilon{\boldsymbol{\upsilon}}\)\(\def\biphi{\boldsymbol{\phi}}\)\(\def\bichi{\boldsymbol{\chi}}\)\(\def\bipsy{\boldsymbol{\psy}}\)\(\def\biomega{\boldsymbol{\omega}}\)\(\def\bupalpha{\bf{\alpha}}\)\(\def\bupbeta{\bf{\beta}}\)\(\def\bupgamma{\bf{\gamma}}\)\(\def\bupdelta{\bf{\delta}}\)\(\def\bupvarepsilon{\bf{\varepsilon}}\)\(\def\bupzeta{\bf{\zeta}}\)\(\def\bupeta{\bf{\eta}}\)\(\def\buptheta{\bf{\theta}}\)\(\def\bupiota{\bf{\iota}}\)\(\def\bupkappa{\bf{\kappa}}\)\(\def\buplambda{\bf{\lambda}}\)\(\def\bupmu{\bf{\mu}}\)\(\def\bupnu{\bf{\nu}}\)\(\def\bupxi{\bf{\xi}}\)\(\def\bupomicron{\bf{\micron}}\)\(\def\buppi{\bf{\pi}}\)\(\def\buprho{\bf{\rho}}\)\(\def\bupsigma{\bf{\sigma}}\)\(\def\buptau{\bf{\tau}}\)\(\def\bupupsilon{\bf{\upsilon}}\)\(\def\bupphi{\bf{\phi}}\)\(\def\bupchi{\bf{\chi}}\)\(\def\buppsy{\bf{\psy}}\)\(\def\bupomega{\bf{\omega}}\)\(\def\bGamma{\bf{\Gamma}}\)\(\def\bDelta{\bf{\Delta}}\)\(\def\bTheta{\bf{\Theta}}\)\(\def\bLambda{\bf{\Lambda}}\)\(\def\bXi{\bf{\Xi}}\)\(\def\bPi{\bf{\Pi}}\)\(\def\bSigma{\bf{\Sigma}}\)\(\def\bPhi{\bf{\Phi}}\)\(\def\bPsi{\bf{\Psi}}\)\(\def\bOmega{\bf{\Omega}}\)\({\rm{2}}{\rm{.5\ nV/}}\sqrt {{\rm{Hz\ }}} {\rm{@\ 1\ Hz}}\)$| and |$\({\rm{4\ nV/}}\sqrt {{\rm{Hz\ }}} {\rm{@\ 1\ mHz}}\)$|; 2) The equivalent input current noise (EICN) level of the circuit is |$\({\rm{14\ fA/}}\sqrt {{\rm{Hz}}} {\rm{\ @\ 1\ Hz}}\)$|; 3) The offset voltage is about 600 nV, and the time drift performance is excellent. In conclusion, the preamplifier circuit has characteristics of ultralow noise, low offset voltage and low time drift. It can effectively amplify low-frequency weak geomagnetic signals from 1 mHz to 1 kHz and provides excellent performance for low-frequency ICS.