At present in China, the use of the transient electromagnetic method (TEM) is emerging as a leading geophysical technique for exploration of water-filled zones in coal mines. These zones are more conductive than the host coal and are easy targets to map. However, there is a growing interest for the investigations of double-layered or multi-layered mined-out zones. Therefore, it is necessary to study the feasibility of TEM's abilities to detect double-layered, water-filled voids. In this study, the basic hydrogeological conditions of a survey area, located in the northern China, are described. The corresponding geophysical models of the single- and double-layered water-filled zones are developed from borehole logging data. Then, forward calculations of different models are carried out with 1D numerical simulations. The modeling results show that it is feasible for TEM to identify these types of targets under certain conditions, including instrument sensitivity, low resistivity for the water-filled zones, and shallower depths. Moreover, the field survey for locating double-layered water-filled zones in coal mines in the Datong region of Shanxi Province is verified by well drilling.

You do not currently have access to this article.