We applied Zelt's new frequency-dependent traveltime tomography (FDTT) method to 2D crosswell seismic field data from an eastern oil field in China. The FDTT uses the frequency content in the seismic waves in both the forward and inverse modeling steps. Although FDTT only uses a 300 Hz frequency to invert the dataset, the degree of matching between the inverted layers from FDTT and that of a sonic well logging curve is high, which shows that FDTT provides a high resolution reconstruction of subsurface structure through the simple use of the first-arrival traveltime data. The case study demonstrates that the FDTT algorithm is practical and can stand up to the complexities of a real 2D crosswell dataset. Additionally, we show that the FDTT method can create a high resolution long wavelength velocity model.

You do not currently have access to this article.