Abstract

Soil salinity is a spatially complex and dynamic property of soil that influences crop yields when the threshold salinity level is exceeded. The mapping and monitoring of soil salinity is necessary for reclamation, crop selection, and site-specific irrigation management of salt-affected soils in the arid and semi-arid agricultural regions of the world. Because of its spatial and temporal heterogeneity, soil salinity is difficult to map and monitor at field scales. There are various methods for characterizing soil salinity variability, but none of these approaches has been as extensively investigated and is as reliable and cost effective as apparent soil electrical conductivity (ECa) directed soil sampling. Geospatial measurements of ECa are well-suited for characterizing soil salinity spatial distribution because they are reliable, quick, and easy to take with GPS-based mobilized ECa measurement equipment. However, ECa is influenced by a variety of soil properties, which makes the measurement of soil salinity at field scale problematic. It is the goal of this review and analysis paper to provide an overview of the field-scale characterization of soil salinity distribution using ECa-directed soil sampling. Guidelines, special considerations, protocols, and strengths and limitations are presented for characterizing spatial and temporal variation in soil salinity using ECa-directed soil sampling. Original data is presented showing the critical importance of conducting ECa surveys at or near field capacity (≥70% of field capacity). A case study of a 32.4-ha field in San Jacinto, California, is provided as an example to demonstrate the effectiveness of generating soil salinity maps. Land resource managers, farmers, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of field-scale maps of soil salinity.

You do not currently have access to this article.