Abstract

A successful case history of applying the high-frequency passive source electromagnetic (EM) method and controlled-source audiomagnetotellurics (CSAMT) to investigate the Qiyueshan (Q) Tunnel route is presented in this paper. The high-frequency EM system (EH-4, with frequency range from 90 KHz to 12.8 Hz) and the CSAMT system (V6-A Multipurpose Receiver, with frequency range from 8,192 Hz to 0.125 Hz) were used for the data acquisition. The orthogonal components of the electromagnetic field were measured in the high frequency EM method, while scalar measurements of the electrical and magnetic field components were used in the CSAMT method. The relevant electrical properties of the earth were extracted from the electromagnetic profiles. High frequency EM has high resolution in the shallow earth but a smaller depth of exploration, while the CSAMT method has a powerful signal but a lower resolution in the shallow earth. The integration of the two methods might be effective for the survey of the deep tunnel route. Q Tunnel, located in central south China, has a length of 10 km and a depth of up to 900 m. Half of the tunnel goes through karst terrain, where the geologic structures are very complex, due to cavities, underground rivers and faults. The EM mapping results distinguish the electrical resistivity of different rock formations. Five low-resistivity areas and four high-resistivity areas were found and nine faults were verified by the EM method. These findings were very useful for the later engineering design.

You do not currently have access to this article.