The Calabrian Orogenic Arc (COA) is affected by active extensional and strike-slip tectonics as documented by the presence of N-S and NE-SW trending intra-montane basins bordered by faults, whose slip has caused many destructive earthquakes during the last millennium. By focusing on the central sector of the COA (Sila Massif) through the analysis of new seismological and geodetic datasets, we observed some relevant differences (e.g., seismic activity and hypocentral depths, faulting style, geodetic strain, vertical rates) between its western and eastern sector. The transition between the two sectors occurs in the area of the Lakes Fault, a NW-SE striking and west-dipping fault indicated as the causative source of the 8 June 1638 M 6.8 earthquake. By modelling the available geodetic data, we inferred a dislocation plane whose geometry and kinematics (a prevalent dip-slip component coupled with minor left-lateral strike-slip) is compatible with the real fault reported in literature. This fault only accounts for a small amount of the deformation across northern COA and divides the seismically more active western sector from its eastern counterpart with appreciable geodetic strain and moderate seismicity. Results are encouraging and a similar approach can help in other regions where surface evidence of active faults are rare or non-existing and field geological investigations are hence difficult.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.