Abstract

In the Wattenberg Field, the Reservoir Characterization Project at the Colorado School of Mines and Occidental Petroleum Corporation (Oxy) (formerly the Anadarko Petroleum Corporation) collected time-lapse seismic data for characterization of changes in the reservoir caused by hydraulic fracturing and production in the Niobrara Formation and Codell Sandstone member of the Carlile Formation. We have acquired three multicomponent seismic surveys to understand the dynamic reservoir changes caused by hydraulic fracturing and production of 11 horizontal wells within a 1 mi2 section (the Wishbone Section). The time-lapse seismic survey acquisition occurred immediately after the wells were drilled, another survey after stimulation, and a third survey after two years of production. In addition, we integrate core, petrophysical properties, fault and fracture characteristics, as well as P-wave seismic data to illustrate reservoir properties prior to simulation and production. Core analysis indicates extensive amounts of bioturbation in zones of high total organic content (TOC). Petrophysical analysis of logs and core samples indicates that chalk intervals have high amounts of TOC (>2%) and the lowest amount of clay in the reservoir interval. Core petrophysical characterization included X-ray diffraction analysis, mercury intrusion capillary pressure, N2 gas adsorption, and field emission scanning electron microscopy. Reservoir fractures follow four regional orientations, and chalk facies contain higher fracture density than marl facies. Integration of these data assist in enhanced well targeting and reservoir simulation.

You do not currently have access to this article.