Abstract

We have constructed a channel complex model at a scale of 1:10,000 by stacking 3D-printed polylactide layers with negative relief meandering channels. This model was subjected to an ultrasonic common-offset acquisition in a water tank (with the water filling the channels), and the result was treated as a zero-offset 3D acoustic reflection seismogram, receiving a deterministic deconvolution and a poststack migration as data treatment. We then developed an algorithm to yield volumes of estimated two-way time layer thickness from multiple-frequency volumes obtained through the short-time Fourier transform. The estimated thicknesses were compared with the measurements of the physical model obtained through X-ray computed tomography. Despite the strong signal attenuation and imaging issues, the results were rather satisfactory, increasing the confidence in using spectral decomposition for quantitative seismic analysis.

You do not currently have access to this article.