Abstract

Tight sandstone gas reservoirs have the characteristics of low porosity and permeability, deep burial, and low production of vertical wells, which are difficult to predict and exploit. Usually, finding a “sweet spot” requires finding zones with well-developed fractures or easy stimulation by hydraulic fracturing in the later stage. For some tight sandstone gas reservoirs where natural fractures are not developed, directional hydraulic fracturing is a good choice to improve single well production. However, not all reservoirs can achieve the desired productivity after hydraulic-fracture stimulation. In the exploration of the Sulige (SLG) gas field in Western China, sweet spots with strong brittleness and good petrophysical properties can ensure the success of hydraulic fracturing. We have evaluated the SLG gas field to determine how to implement an engineering-oriented sweet spot prediction workflow. The method has five steps: data-quality analysis, lithology prediction, brittleness prediction, petrophysical property prediction, and well planning. We evaluated the feasibility of subsequent sensitive elastic parameter inversion by comparing the accrual and simulated seismic gathers. Then, we used a direct inversion method of Young’s modulus to predict lithology and identify fluid at the same time. Next, we constructed a new brittleness index by combining the rate of change of Young’s modulus and the quartz content to evaluate the brittleness of rocks, which can overcome the shortage of the conventional brittleness index constructed by a single parameter. Finally, by using the brittleness index, we combined the petrophysical properties inversion results to select regions with strong brittleness and good petrophysical properties as the basis of well planning. This workflow achieved remarkable results in the exploration of tight sandstone gas reservoirs in the SLG gas field in Western China.

You do not currently have access to this article.