Abstract

Geologic interpretation of resistivity models from marine controlled-source electromagnetic (CSEM) and magnetotelluric (MT) data for hydrocarbon exploration and reservoir monitoring can be problematic due to structural complexity and low-resistivity contrasts in sedimentary units typically found in new frontier areas. It is desirable to reconstruct 3D resistivity structures that are consistent with seismic images and geologic expectations of the subsurface to reduce uncertainty in the evaluation of petroleum ventures. Structural similarity is achieved by promoting a cross-gradient constraint between external seismically derived gradient fields and the inversion resistivity model. The gradient fields come from coherency weighted structure tensors computed directly from the seismic volume. Consequently, structural similarity is obtained without the requirement for any horizon interpretation or picking, thus significantly reducing the complexity and effort. We have determined the effectiveness of this approach using CSEM, MT, and seismic data from a structurally complex fold-thrust belt in offshore northwest Borneo.

You do not currently have access to this article.