Abstract

Reservoir characterization requires accurate elastic logs. It is necessary to guarantee that the logging tool is stable during the drilling process to avoid compromising the measurements of the physical properties in the formation in the vicinity of the well. Irregularities along the borehole may happen, especially if the drilling device is passing through unconsolidated formations. This affects the signals recorded by the logging tool, and the measurements may be more impacted by the drilling mud than by the formation. The caliper log indicates the change in the diameter of the borehole with depth and can be used as an indicator of the quality of other logs whose data have been degraded by the enlargement or shrinkage of the borehole wall. Damaged well-log data, particularly density and velocity profiles, affect the quality and accuracy of the well-to-seismic tie. To investigate the effects of borehole enlargement on the well-to-seismic tie, an analysis of density log correction was performed. This approach uses Doll’s geometric factor to correct the density log for wellbore enlargement using the caliper readings. Because the wavelet is an important factor on the well tie, we tested our methodology with statistical and deterministic wavelet estimations. For both cases, the results using the real data set from the Viking Graben field — North Sea indicated up to a 7% improvement on the correlation between the real and synthetic seismic traces for well-to-seismic tie when the density correction was made.

You do not currently have access to this article.