Abstract

Using time-frequency and time-phase analysis we found that for an isolated thin bed in a binary-impedance setting, there is no observable sensitivity in preferential illumination as layered net-to-gross (NTG) changes within the isolated thin bed, regardless of the way the internal layering is distributed — either uniformly or semirandomly. The NTG signature is observed on the amplitude (magnitude) responses, rather than any specific frequency or phase component. On the other hand, external mutual thin-bed interference can significantly change the preferred phase component for each participating target. This phenomenon is largely driven by the embedded seismic wavelet that determines the nominal seismic response of an isolated thin layer and what phase component would preferentially illuminate it. For vertical separations between mutually interfering and elastically comparable thin beds in which mutual constructive interference is achieved, the target bed will be preferentially illuminated at a phase component that is very close to that of a total seismic isolation, whereas the occurrence of mutual destructive interference will cause a significant departure on the phase preferential illumination from that of an isolated seismic thin bed. All these observations can provide an avenue to yield more robust stratigraphic interpretations of seismic data and enhance the confidence on subsurface description.

You do not currently have access to this article.