A special challenge for land seismic exploration is estimating velocities, in part due to complex near-surface structures, and in some instances because of rugose topography over foothills. We have developed an integrated turning-ray and reflection-tomographic method to face this challenge. First, turning-ray tomography is performed to derive a near-surface velocity-depth model. Then, we combine the near-surface model with the initial-subsurface model. Taking the combined model as starting model, we go through a reflection tomographic process to build the model for imaging. During reflection tomography, the near-surface model and subsurface models are jointly updated. Our method has been successfully applied to a 2D complex synthetic data example and a 3D field data example. The results demonstrate that our method derives a very decent model even when there is no reflection information available in a few hundred meters underneath the surface. Joint tomography can lead to geologic plausible models and produce subsurface images with high fidelity.

You do not currently have access to this article.