Abstract

We have investigated the distribution and thickness of damage zones for a system of secondary normal faults in the subsurface of the Wangxuzhuang oilfield, China. Based on seismic variance analysis, we find (1) four isolated faults with approximately 2 km length and approximately 200 m damage-zone thickness. The damage zones of these isolated faults reveal a decaying intensity of deformation from the fault core to the protolith, which fits a power-law form y=axb similar to that observed in the field. (2) A merged fault with approximately 400 m thickness. (3) A bifurcated fault with approximately 400 m thickness and three linked segments. Damage zones that consist of several subsidiary faults are thicker than those of isolated faults. The displacement-length analyses of the four isolated faults suggest the constant-length growth of the limestone in this case. We determine the potential to apply seismic variance to systematically characterize damage zones as potential fluid migration conduits on the basin scale.

You do not currently have access to this article.