Carbonate reservoirs in the S area of the Tarim Basin (China) are ultradeep hydrocarbon resources, with low porosity, complex fracture systems, and dissolved pores. Microfracturing is a key factor of reservoir connectivity and storage space. We have performed measurements on limestone samples, under different confining pressures, and we used the self-consistent approximation model and the Biot-Rayleigh theory of double porosity to study the microfractures. We have computed the fluid properties (mainly oil) as a function of temperature and pressure. Using the dependence of seismic Q on the microfractures, a multiscale 3D rock-physics template (RPT) is built, based on the attenuation, P-wave impedance, and phase velocity ratio. We estimate the ultrasonic and seismic attenuation with the spectral-ratio method and the improved frequency-shift method, respectively. Then, calibration of the RPTs is performed at ultrasonic and seismic frequencies. We use the RPTs to estimate the total and microfracture porosities. The results indicate that the total porosity is low and the microfracture porosity is relatively high, which is consistent with the well log data and actual oil production reports. This work presents a method for identification of deep carbonate reservoirs by using the microfracture porosity estimated from the 3D RPT, which could be exploited in oil and gas exploration.

You do not currently have access to this article.