Abstract

The information within seismic data is band limited and angle limited. Together with the particular physics and geology of carbonate rocks, this imposes limitations on how accurately we can predict the presence of hydrocarbons in carbonates, map the top carbonate, and characterize the porosity distribution through seismic amplitude analysis. Using data for a carbonate reef from the Nam Con Son Basin, Vietnam, the expectations based on rock-physics analysis are that the presence of gas can be predicted only when the porosity at the top of the carbonate is extremely high (>35%), but that a fluid contact is unlikely to be observed in the background of significant porosity variations. Mapping the top of the carbonate (except when the top carbonate porosities are low) or a fluid contact requires accurate estimates of changes in VP/VS. The seismic data do not independently support such an accurate estimation of sharp changes in VP/VS. The standard approach of introducing low-frequency models and applying rock-physics constraints during a simultaneous inversion does not resolve the problems: The results are heavily biased by the well control and the initial interpretation of the top carbonate and fluid contact. A facies-based inversion in which the elastic properties are restricted to values consistent with the facies predicted to be present removes the well bias, but it does not completely obviate the need for a reasonably accurate initial interpretation in terms of prior facies probability distributions. Prestack inversion improves the quality of the facies predictions compared with a poststack inversion.

You do not currently have access to this article.