Shear-wave velocities were estimated at a levee site by inverting Love waves using the multichannel analysis of surface waves (MASW) method augmented with the high-resolution linear Radon transform (HRLRT). The selected site was one of five levee sites in southern Texas chosen for the evaluation of several seismic data-analysis techniques readily available in 2004. The methods included P- and S-wave refraction tomography, Rayleigh- and Love-wave surface-wave analysis using MASW, and P- and S-wave cross-levee tomography. The results from the 2004 analysis revealed that although the P-wave methods provided reasonable and stable results, the S-wave methods produced surprisingly inconsistent shear-wave velocity VS estimates and trends compared with previous studies and borehole investigations. In addition, the Rayleigh-wave MASW method was nearly useless within the levee due to the sparsity of high frequencies in fundamental-mode surface waves and complexities associated with inverting higher modes. This prevented any reliable VS estimates for the levee core. Recent advances in methodology, such as the HRLRT for obtaining higher resolution dispersion-curve images with the MASW method and the use of Love-wave inversion routines specific to Love waves as part of the MASW method, provided the motivation to extend the 2004 original study by using horizontal-component seismic data for characterizing the geologic properties of levees. Contributions from the above-mentioned techniques were instrumental in obtaining VS estimates from within these levees that were very comparable with the measured borehole samples. A Love-wave approach can be a viable alternative to Rayleigh-wave MASW surveys at sites where complications associated with material or levee geometries inhibit reliable VS results from Rayleigh waves.

You do not currently have access to this article.