Abstract

Estimation of S-wave velocity is one of the most critical steps for prestack seismic inversion. Based on the petrophysical model of fractured carbonate rocks, theoretical methods are firstly investigated for estimating P- and S-wave velocities in the presence of fractures. Then, the methods of calculating elastic properties in fractured carbonate rocks are discussed. The mineral concentration, total porosity, and fracture porosity from core X-ray diffraction and routine core measurements or log interpretation results are used to estimate the P- and S-wave velocities. In the given carbonate rock model, the elastic properties of carbonate rocks with different porosity and fractures are calculated. Two field tests prove that the proposed new method is effective and accurate. Furthermore, the model is useful for fluid identification, which is one of the most outstanding problems for carbonate reservoir description. The simulation results suggest that the larger the fracture porosity is, the easier fluid typing. In Tahe Oilfield, the elastic properties of different fluid zones indicate that bulk modulus and Young’s modulus are more sensitive to fluid than shear modulus, the Lamé constant, and Poisson’s ratio.

You do not currently have access to this article.