Full-waveform inversion (FWI) is used to estimate the near-surface velocity field by minimizing the difference between synthetic and observed data iteratively. We apply this method to a data set collected on land. A multiscale strategy is used to overcome the local minima problem and the cycle-skipping phenomenon. Another obstacle in this application is the slow convergence rate. The inverse Hessian can enhance the poorly blurred gradient in FWI, but obtaining the full Hessian matrix needs intensive computation cost; thus, we have developed an efficient method aimed at the pseudo-Hessian in the time domain. The gradient in our FWI workflow is preconditioned with the obtained pseudo-Hessian and a synthetic example verifies its effectiveness in reducing computational cost. We then apply the workflow on the land data set, and the inverted velocity model is better resolved compared with traveltime tomography. The image and angle gathers we get from the inversion result indicate more detailed information of subsurface structures, which will contribute to the subsequent seismic interpretation.

You do not currently have access to this article.