Abstract

A baseline 3D3C seismic survey was acquired in May 2014 at a Field Research Station in Southern Alberta, Canada, which is the site of experimental CO2 injection into an Upper Cretaceous sandstone at approximately 300 m depth. We have created synthetic seismograms from sonic and density logs to identify reflectors seen on the processed seismic data. The high-amplitude positive response (peak) at the top of the Upper Cretaceous Milk River Formation sandstone on the normal incidence PP synthetic seismogram does not match the response seen on the migrated PP seismic data, which is a very low amplitude peak. For such a high impedance, low Poisson’s ratio sandstone, the Zoeppritz equations predict a high-amplitude reflection coefficient at zero offset, then a decrease in amplitude, and even a change in polarity with increasing source-receiver offset. To match the stacked seismic data better, we have created offset synthetic seismograms using P- and S-wave sonic logs and density logs. The character of the top Milk River reflection on the seismic data stacked using all offset traces resembles that observed on the stacked offset synthetic seismogram, which is a similar low-amplitude peak. The character of the top Milk River reflection on the seismic data stacked using only near-offset traces to 250 m looks like that seen on the normal incidence synthetic seismogram.

You do not currently have access to this article.