Abstract

We have determined subsurface structure using the refraction microtremor (ReMi) method at the Ngatamariki geothermal field, Central North Island, New Zealand. The local geology is such that refraction and reflection studies are hindered by energy scattering and attenuation in the near-surface layers. The ReMi method uses surface waves from ambient noise and active sources to determine S-wave velocities in the shallow subsurface. We have deployed two lines of 72-channel, 10 Hz vertical geophones with 10 m spacing, and we were able to model near-surface S-wave velocity to depths of 57–93 m for 2D profiles and as much as 165 m for 1D profiles. Shear-velocity anomalies were detected on one line that were spatially correlated with a fault. The location of the fault was previously inferred from stratigraphic offset in the geothermal wells, suggesting that the ReMi method can provide important constraints on near-surface geology in noisy geothermal settings.

You do not currently have access to this article.