Abstract

A 3D seismic survey over the Intisar E field in the Ajdabiya Trough of the Sirte Basin, Libya, revealed a channel-like feature in Eocene carbonates that wraps around the pinnacle reef that contains the reservoir. We have used coherence, curvature, and spectral decomposition seismic attributes to determine the morphology and gray-level co-occurrence matrix attributes to define seismic facies within the feature. These indicated that the channel originated by submarine scouring caused by downslope movement of turbidity currents. Erosion was followed by the deposition of successive layers of carbonate debris in the channel. Stratigraphic correlations with the adjacent pinnacle reef revealed that the channel was cut during the late stage of reef growth, and a second channel formed after the Intisar E reef ceased to grow. Differences in seafloor elevation over the reef probably diverted turbidity currents so channels were not cut into the reef, breaching the reservoir. This interpreted geologic history may explain why some pinnacle reefs in the Intisar complex contained giant reservoirs, whereas others were barren.

You do not currently have access to this article.