During the past decade, the size of 3D seismic data volumes and the number of seismic attributes have increased to the extent that it is difficult, if not impossible, for interpreters to examine every seismic line and time slice. To address this problem, several seismic facies classification algorithms including k-means, self-organizing maps, generative topographic mapping, support vector machines, Gaussian mixture models, and artificial neural networks have been successfully used to extract features of geologic interest from multiple volumes. Although well documented in the literature, the terminology and complexity of these algorithms may bewilder the average seismic interpreter, and few papers have applied these competing methods to the same data volume. We have reviewed six commonly used algorithms and applied them to a single 3D seismic data volume acquired over the Canterbury Basin, offshore New Zealand, where one of the main objectives was to differentiate the architectural elements of a turbidite system. Not surprisingly, the most important parameter in this analysis was the choice of the correct input attributes, which in turn depended on careful pattern recognition by the interpreter. We found that supervised learning methods provided accurate estimates of the desired seismic facies, whereas unsupervised learning methods also highlighted features that might otherwise be overlooked.

You do not currently have access to this article.