Abstract

The organic-rich upper Jurassic Draupne and Heather Formations are the main proven source rocks of the Norwegian North Sea. We have developed a workflow for the organic geochemical, petrophysical, and seismic characterization of the Draupne and Heather Formation source rocks in a 2348km2 study area in quadrant 25 in the Viking Graben in the Norwegian North Sea. We characterized the vertical and lateral organic richness variations using biostratigraphy, organic geochemical data, and petrophysical logs. The Draupne Formation is a rich (6.5 wt.% total organic carbon [TOC], 360 HI), oil-prone, immature to early oil mature source rock, representing a 25-m-thick condensed section, partly eroded over the Utsira high and thickening to 150–300 m toward the deep grabens. The underlying Heather Formation is also an oil-prone (4.4 wt.% TOC, 270 HI), 30- to 400-m-thick, more mature source rock. To map the TOC distribution using seismic, we performed detailed seismic interpretation and seismic attribute analysis following the petrophysical calibration of TOC with the VP/VS ratio and P impedance on well data. Similar patterns of low-impedance high-TOC areas highlighted and mapped from the petrophysical studies at the Heather level were also observed on seismic relative acoustic impedance and amplitude maps over the study area. The poststack seismic data conditioning (structurally orientated noise reduction) improved the quality of the input megamerge seismic data and allowed the application of colored inversion, structural and fault imaging, as well as multiattribute combination and visualization techniques, which have been efficient in highlighting the distribution of high-TOC areas, structure and fault zones within the study area.

You do not currently have access to this article.