Abstract

Using a variety of recent public-domain data sets comprising porosity, velocity (P- and S-waves), and, in most cases, mineralogy and petrographic data, I created an extensive global data set and evaluated the importance of mineralogy and pore type on the elastic properties behavior of carbonate core plugs. Results from this investigation clearly illuminated the potential for overinterpreting elastic properties behavior as a function of pore type(s) when mineralogy was not explicitly included in the analysis. Rock-physics analysis using a combination of heuristic and theoretical models illustrated that mineralogy exerted a significant additional variation on velocity at a given porosity. Failure to account for mineralogy exacerbated inferences about the effect of pore type(s) made using a comparison of P-wave velocity to an inappropriate empirical model (Wyllie) that did not account for pore shape(s). In this analysis, extreme variability in carbonate velocity was observed in only portions of two data sets, when mineralogy was explicitly considered and robust models that accounted for inclusion (pore) shape were used. Results from this analysis resulted in a recommended workflow, including a rock-physics template and dry-rock modulus diagnostics, for the evaluation of lab-based carbonate rock-physics data. The workflow was amenable to further integration with well-based data and other core-based petrophysical measurements (e.g., electrical properties).

You do not currently have access to this article.