Spectral decomposition techniques can break down the broadband seismic records into a series of frequency components that are useful for seismic interpretation and reservoir characterization. However, it is laborious and time-consuming to analyze and to interpret each seismic frequency volume taking all the usable seismic bandwidth. In this context, we propose a multivariate technique based on independent component analysis (ICA) with the goal of choosing the spectral components that best represent the whole seismic spectrum while keeping the main geological information. The ICA-based method goes beyond the Gaussian assumption and takes advantage of higher order statistics to find a new set of variables that are independent of each other. The independence between two components is a more general statistical concept than the noncorrelation and, in principle, allows the extraction of more significant information from the data. We have tested four different contrast functions to estimate the independent components (ICs), which we could verify a better channel system identification depending on the contrast function used. By stacking the ICs in the red-green-blue color space, we could represent the main information in a single, good quality image. To illustrate the proposed method, we have applied it to a seismic volume which was acquired over the F3 block in the Dutch sector of the North Sea. We also compared the results with those obtained by principal component analysis. In this case, the ICA-based method could generate a better image and faithfully delineate a channel system presented in the studied seismic volume.

You do not currently have access to this article.