Abstract

Here, I provide an historical summary of seismic stratigraphy and suggest some potential avenues for future collaborative work between sedimentary geologists and geophysicists. Stratigraphic interpretations based on reflection geometry- or shape-based approaches have been used to reconstruct depositional histories and to make qualitative and (sometimes) quantitative predictions of rock physical properties since at least the mid-1970s. This is the seismic stratigraphy that is usually practiced by geology-focused interpreters. First applied to 2D seismic data, interest in seismic stratigraphy was reinvigorated by the development of seismic geomorphology on 3D volumes. This type of reflection geometry/shape-based interpretation strategy is a fairly mature science that includes seismic sequence analysis, seismic facies analysis, reflection character analysis, and seismic geomorphology. Rock property predictions based on seismic stratigraphic interpretations usually are qualitative, and reflection geometries commonly may permit more than one interpretation. Two geophysics-based approaches, practiced for nearly the same length of time as seismic stratigraphy, have yet to gain widespread adoption by geologic interpreters even though they have much potential application. The first is the use of seismic attributes for “feature detection,” i.e., helping interpreters to identify stratigraphic bodies that are not readily detected in conventional amplitude displays. The second involves rock property (lithology, porosity, etc.) predictions from various inversion methods or seismic attribute analyses. Stratigraphers can help quality check the results and learn about relationships between depositional features and lithologic properties of interest. Stratigraphers also can contribute to a better seismic analysis by helping to define the effects of “stratigraphy” (e.g., laminations, porosity, bedding) on rock properties and seismic responses. These and other seismic-related pursuits would benefit from enhanced collaboration between sedimentary geologists and geophysicists.

You do not currently have access to this article.