A.M. Macgregor (1888-1961) is remembered for his enormous contribution to geology. His maps changed the course of geological thinking in southern Africa. Following in his footsteps we examine aspects of our current understanding of the geological evolution of the Zimbabwe Craton and, using new SHRIMP U-Pb ages of zircons from felsic volcanic and plutonic rocks from northern Zimbabwe and unpublished data related to the seminal paper by Wilson et al. (1995), a synthesis is proposed for the formation of the Neoarchaean greenstones. The data suggest marked differences (lithostratigraphy, geochemistry and isotope data, mineral endowment and deformational history), between Eastern and Western Successions, which indicate fundamentally different geodynamic environments of formation. The Eastern Succession within the southcentral part of the craton, largely unchanged in terms of stratigraphy, is reminiscent of a rift-type setting with the Manjeri Formation sediments and overlying ca. 2 745 Ma Reliance Formation komatiite magmatism being important time markers. In contrast, the Western Succession is reminiscent of a convergent margin subduction-accretion system with bimodal mafic-felsic volcanism and accompanying sedimentation constrained to between 2 715 and 2 683 Ma. At ca. 2 670 Ma, a tectonic switch likely marks the onset of deposition of Shamvaian felsic volcanism and sedimentation. The Shamvaian resembles pull-apart basin successions and is dominated by deposition of a coarse clastic sedimentary succession, with deposition likely constrained to between 2 672 and 2 647 Ma. The late tectonic emplacement of small, juvenile multiphase stocks, ranging in composition from gabbroic to granodioritic was associated with gold ± molybdenum mineralisation. Their emplacement at 2 647 Ma provides an upper age limit to the timespan of Shamvaian deposition. Amongst the youngest granites are the extensive, largely tabular late- to post-tectonic ca. 2 620 to 2 600 Ma Chilimanzi Suite granites. These granites are characterised by evolved isotopic systems and have been related to crustal relaxation and anatexis following deformation events. After their emplacement, the Zimbabwe Craton cooled and stabilised, with further deformation partitioned into lower-grade, strike-slip shear zones, and at ca. 2 575 Ma the craton was cut by the Great Dyke, its satellite dykes and related fractures.

You do not currently have access to this article.