The morphological, chemical impurities and carbon isotope properties of diamonds may reveal subtle details of their mantle source and growth characteristics, supporting efforts towards identifying their original place of harvesting. Here we investigate the mantle carbon and nitrogen sources and growth patterns from selected diamonds mined from four kimberlites: macro-sized diamonds from River Ranch kimberlite in Zimbabwe and the Swartruggens and Klipspringer kimberlitic deposits from South Africa, and micro-sized diamonds from the Klipspringer and Premier kimberlite intrusions in South Africa. Type IaAB diamonds are found in all the samples; Type IaB diamonds only occur in samples from the Swartruggens, River Ranch and Premier kimberlites. A single Type II diamond (nitrogen below the detection limit) was also observed in the River Ranch and Premier kimberlites. Both the micro- and macro-sized diamonds from Klipspringer have similar nitrogen contents. Based on the % B-defect, the diamonds from Klipspringer are grouped into low- and high-nitrogen aggregates (i.e. % of B-defect <40% and >56%, respectively) that likely represent two different diamond forming episodes. Time averaged mantle storage temperatures for Type IaAB diamonds are calculated to have been: 1060°C for Swartruggens; 1190°C for River Ranch; 1100°C (low aggregated); and 1170°C (highly aggregated) for Klipspringer, and 1210°C for Premier diamonds. The CL-images of the River Ranch, Klipspringer and Premier diamonds reveal multi-oscillatory growth zones. The carbon isotopic analyses on the diamonds reveal an average δ13CVPDB value of: -4.5‰ for Swartruggens; -4.7‰ for River Ranch; -4.5‰ for Klipspringer; and -3‰ for Premier. With the exception of the diamond from Premier, the average δ13C value of the diamonds are similar to the average δ13C value of the mantle (-5‰), which is similar to the occurrence of diamonds in the other kimberlites. The internal carbon isotopic variation of individual diamonds from Swartruggens, Klipspringer and Premier are less than 4‰, which is similar to the variability of most other diamond occurrences reported from elsewhere in the world. Up to 6.7‰ internal carbon isotopic variation was observed in a single diamond from River Ranch. The internal carbon isotopic studies of the diamonds reveal that the primary carbon in the Swartruggens and Klipspringer was derived from an oxidation of CH4-bearing fluid, whereas in the River Ranch the primary carbon was derived from the reduction of carbonate-or CO2-bearing fluids. The Swartruggens diamonds also reveal a secondary carbon sourced from a reduction of CO2- or carbonate-rich fluid or melt. Diamonds from Klipspringer exhibit a cyclic change in δ13C values that reflects fluctuation in a complex mantle perturbation system or periodic change in fugacity of the mantle. Based on this study, we conclude that, in principle, a selected range of diamond signatures might be used to fingerprint their origins; especially when linked to their other physical properties such as a low temperature magnetic signature.

You do not currently have access to this article.