Abstract

Throughout exploration Block 2 of the Orange Basin offshore the South African continental margin, different natural gas leakage features and the relationship between natural gas leakage with structural and stratigraphic elements were studied. This study also quantifies liquid/gas hydrocarbon generation, migration and seepage dynamics through the post-rift history of the basin.

The interpretation of seismic data reveals two mega-sequences: Cretaceous and Cenozoic that are subdivided by major stratigraphic unconformities into 5 and 2 sub-units, respectively. The basin is also divided into 2 structural domains:

  1. an extensional domain characterized by basinward dipping listric normal faults rooted at the Cenomanian/Turonian level identified between 500 to 1500 m of present-day depth,

  2. a compressional domain that accommodates the up-dip extension on the lower slope, and which is characterized by landward dipping thrust faults.

One hundred and thirteen observed gas chimneys are identified and classified into stratigraphically-controlled (sa-c) and structurally-controlled (s-c) chimneys. The ratio of s-c versus s-ac chimneys is estimated as 2:5, which suggest a strong stratigraphic control on natural gas leakage. The chimneys either terminate at the seafloor where active leaking gas is manifested by pockmarks, or are sealed within the Miocene (14 Ma) sequence as paleo-pockmarks. The s-c chimneys are located along the normal faults in the extensional domain, and terminate as seafloor mounds up to 1500 m in diameter and with heights between 10 to 50 m. The sa-c pockmarks range between 100 to 400 m in diameter, and are linked to stratigraphic onlaps and pinch-outs within the Aptian sequence. Several giant chimneys, with diameters of more than 7 km, are also identified. At least one of these displays apparent internal gravitational collapse structures. Bright spots indicative of gas presence within these large chimneys were identified, but there is no evidence of acoustic turbidity or seismic pull-downs within these large structures. This suggests the giant chimneys are inactive paleo-gas-escape structures.

Modelling suggests that gas from the lower Aptian and the Barremian source rocks migrates laterally-updip to the proximal parts of the basin where it accumulates beneath the Cenomanian/Turonian sequence that acts as a regional seal. Across the shelf-break and the upper slope, chimneys and pockmarks are fed from younger Cenomanian/Turonian source rocks. The migration model also indicates that fluids are about 24 times more likely to flow out of the study area than to be preserved within it.

Since methane gas escaping across the sea floor into the exosphere (combined hydrosphere and atmosphere) may contribute to Earth’s climate fluctuations, and because escaping gas must have been cut off when at least half of identified s-c chimneys were sealed within the Miocene sequence, decrease of gas escape along the southern African continental margin may have to be factored into global Neogene cooling models.

You do not currently have access to this article.