The Grenville and Caledonian orogens, fundamental to building Laurentia and Baltica, intersect in northern Scotland. The Precambrian Glenelg Inlier, within the Scottish Caledonides, preserves a record of Grenvillian, Knoydartian and Caledonian orogenesis. Based on new mapping and re-interpretation of previous mapping, we present a structural model for the evolution of the Glenelg Inlier. The inlier can be divided into Western Glenelg gneiss comprising orthogneiss with no record of Grenville-age metamorphism, and Eastern Glenelg gneiss with ortho- and paragneiss, affected by Grenvillian eclogite-facies metamorphism. The basement gneisses and their original cover of psammitic, Neoproterozoic Morar Group (Moine) rocks were deformed by three generations of major ductile folds (F1–F3). In medium-strain areas F2 and F3 folds are broadly coaxial and both face to the west; in higher strain areas F2 and F3 folds are oblique to each other. By restoring post-F1 folds and late faults, the Glenelg gneiss inliers are seen to form the core of a major recumbent SSE-facing F1 isoclinal fold nappe – the Proto-Moine Nappe. The upper limb of this nappe is a thick, right-way-up sequence of moderately strained Morar Group rocks whereas the lower, inverted limb comprises intensely deformed, migmatitic Morar Group rocks. Within the constraints of published geochronology, the Proto-Moine Nappe is likely Pre-Caledonian and may have originated during the early Neoproterozoic Knoydartian Orogeny.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.