Skip to Main Content
Skip Nav Destination

The Cauvery Basin in East India represents a failed rift zone in the west and transform-related termination in the east. The deformation associated with a westward-propagating rift zone involves stretching and necking-related deformation from west to east. The rift axis and the flanks exhibit maximum and minimum deformation.

In this study, we document the increasing role of buoyancy-driven processes and the development of the rift asymmetry during the advanced stages of rifting in a magma-poor setting. We use a series of reflection seismic profiles intersecting the failed rift zone maturing eastward.

The onset of buoyancy-controlled extension correlates with the localized extension. It creates a relatively symmetrical axial dome, and exhibits rift flank rotations and central up-warping. This permanent uplift is associated with lower crustal ductile flow. Notably, the deep-seated syn-rift buoyancy forces progressively operate eastward. We deduce the associated transient dome uplift and its subsequent dissipation using a seismic flattening technique. The axial dome formation is associated with an upwelling asthenosphere and lower lithospheric mantle. This correlates with localized contraction within flat-lying fault blocks at its flanks, concurrently forming the typical hanging-wall and footwall geometry. The multiple shallow- to deep-seated mechanisms promote strain acceleration in the uplifted regions along the rift zone.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal