Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up
CONTAINS OPEN ACCESS

This memoir is the first to review all of Antarctica's volcanism between 200 million years ago and the Present. The region is still volcanically active. The volume is an amalgamation of in-depth syntheses, which are presented within distinctly different tectonic settings. Each is described in terms of (1) the volcanology and eruptive palaeoenvironments; (2) petrology and origin of magma; and (3) active volcanism, including tephrochronology. Important volcanic episodes include: astonishingly voluminous mafic and felsic volcanic deposits associated with the Jurassic break-up of Gondwana; the construction and progressive demise of a major Jurassic to Present continental arc, including back-arc alkaline basalts and volcanism in a young ensialic marginal basin; Miocene to Pleistocene mafic volcanism associated with post-subduction slab-window formation; numerous Neogene alkaline volcanoes, including the massive Erebus volcano and its persistent phonolitic lava lake, that are widely distributed within and adjacent to one of the world's major zones of lithospheric extension (the West Antarctic Rift System); and very young ultrapotassic volcanism erupted subglacially and forming a world-wide type example (Gaussberg).
Chapter 7.4 Active volcanoes in Marie Byrd Land
Correspondence: [email protected]
-
Published:May 27, 2021
-
CiteCitation
N. W. Dunbar, N. A. Iverson, J. L. Smellie, W. C. McIntosh, M. J. Zimmerer, P. R. Kyle, 2021. "Chapter 7.4 Active volcanoes in Marie Byrd Land", Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up, J. L. Smellie, K. S. Panter, A. Geyer
Download citation file:
- Share
Abstract
Two volcanoes in Marie Byrd Land, Mount Berlin and Mount Takahe, can be considered active, and a third, Mount Waesche, may be as well; although the chronology of activity is less well constrained. The records of explosive activity of these three volcanoes is well represented through deposits on the volcano flanks and tephra layers found in blue ice areas, as well as by the presence of cryptotephra layers found in West and East Antarctic ice cores. Records of effusive volcanism are found on the volcano flanks but some deposits may be obscured by pervasive glacerization of the edifices. Based on a compilation of tephra depths–ages in ice cores, the activity patterns of Mount Takahe and Mount Berlin are dramatically different. Mount Takahe has erupted infrequently over the past 100 kyr. Mount Berlin, by contrast, has erupted episodically during this time interval, with the number of eruptions being dramatically higher in the time interval between c. 32 and 18 ka. Integration of the Mount Berlin tephra record from ice cores and blue ice areas over a 500 kyr time span reveals a pattern of geochemical evolution related to small batches of partial melt being progressively removed from a single source underlying Mount Berlin.
- absolute age
- Antarctic ice sheet
- Antarctica
- Ar/Ar
- Cenozoic
- chronostratigraphy
- craters
- dates
- eruptions
- Holocene
- ice cores
- igneous rocks
- K/Ar
- layered materials
- Marie Byrd Land
- phonolites
- pyroclastics
- Quaternary
- stratovolcanoes
- tephrostratigraphy
- trachytes
- volcanic rocks
- volcanism
- volcanoes
- West Antarctica
- Mount Moulton
- Mount Berlin
- Mount Takahe
- Mount Waesche
- cryptotephra