Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up
CONTAINS OPEN ACCESS

This memoir is the first to review all of Antarctica's volcanism between 200 million years ago and the Present. The region is still volcanically active. The volume is an amalgamation of in-depth syntheses, which are presented within distinctly different tectonic settings. Each is described in terms of (1) the volcanology and eruptive palaeoenvironments; (2) petrology and origin of magma; and (3) active volcanism, including tephrochronology. Important volcanic episodes include: astonishingly voluminous mafic and felsic volcanic deposits associated with the Jurassic break-up of Gondwana; the construction and progressive demise of a major Jurassic to Present continental arc, including back-arc alkaline basalts and volcanism in a young ensialic marginal basin; Miocene to Pleistocene mafic volcanism associated with post-subduction slab-window formation; numerous Neogene alkaline volcanoes, including the massive Erebus volcano and its persistent phonolitic lava lake, that are widely distributed within and adjacent to one of the world's major zones of lithospheric extension (the West Antarctic Rift System); and very young ultrapotassic volcanism erupted subglacially and forming a world-wide type example (Gaussberg).
Chapter 5.1b Northern Victoria Land: petrology
Correspondence: [email protected]
-
Published:May 27, 2021
Abstract
Cenozoic magmatic rocks related to the West Antarctic Rift System crop out right across Antarctica, in Victoria Land, Marie Byrd Land and into Ellsworth Land. Northern Victoria Land, located at the northwestern tip of the western rift shoulder, is unique in hosting the longest record of the rift-related igneous activity: plutonic rocks and cogenetic dyke swarms cover the time span from c. 50 to 20 Ma, and volcanic rocks are recorded from 15 Ma to the present. The origin of the entire igneous suite is debated; nevertheless, the combination of geochemical and isotopic data with the regional tectonic history supports a model with no role for a mantle plume. Amagmatic extension during the Cretaceous generated an autometasomatized mantle source that, during Eocene–present activity, produced magma by small degrees of melting induced by the transtensional activity of translithospheric fault systems. The emplacement of Eocene–Oligocene plutons and dyke swarms was focused along these fault systems. Conversely, the location of the mid-Miocene–present volcanoes is governed by lithospheric necking along the Ross Sea coast for the largest volcanic edifices; while inland, smaller central volcanoes and scoria cones are related to the establishment of magma chambers in thicker crust.
- alkaline earth metals
- Antarctica
- Cenozoic
- Cretaceous
- dike swarms
- Ellsworth Land
- Eocene
- igneous rocks
- intrusions
- isotope ratios
- isotopes
- lava
- lead
- lithosphere
- magmatism
- major elements
- mantle
- mantle plumes
- Marie Byrd Land
- Mesozoic
- metals
- Mount Erebus
- Mount Melbourne
- Oligocene
- Paleogene
- Pb-206/Pb-204
- petrology
- plate tectonics
- plutonic rocks
- plutons
- radioactive isotopes
- rift zones
- rifting
- Sr-87/Sr-86
- stable isotopes
- strontium
- Tertiary
- trace elements
- upwelling
- Victoria Land
- West Antarctica
- whole rock
- Hallett Volcanic Province
- Meander Intrusive Group
- Melbourne Volcanic Province