Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up
CONTAINS OPEN ACCESS

This memoir is the first to review all of Antarctica's volcanism between 200 million years ago and the Present. The region is still volcanically active. The volume is an amalgamation of in-depth syntheses, which are presented within distinctly different tectonic settings. Each is described in terms of (1) the volcanology and eruptive palaeoenvironments; (2) petrology and origin of magma; and (3) active volcanism, including tephrochronology. Important volcanic episodes include: astonishingly voluminous mafic and felsic volcanic deposits associated with the Jurassic break-up of Gondwana; the construction and progressive demise of a major Jurassic to Present continental arc, including back-arc alkaline basalts and volcanism in a young ensialic marginal basin; Miocene to Pleistocene mafic volcanism associated with post-subduction slab-window formation; numerous Neogene alkaline volcanoes, including the massive Erebus volcano and its persistent phonolitic lava lake, that are widely distributed within and adjacent to one of the world's major zones of lithospheric extension (the West Antarctic Rift System); and very young ultrapotassic volcanism erupted subglacially and forming a world-wide type example (Gaussberg).
Chapter 3.1a Antarctic Peninsula and South Shetland Islands: volcanology Available to Purchase
Correspondence: [email protected]
-
Published:May 27, 2021
Abstract
The voluminous continental margin volcanic arc of the Antarctic Peninsula is one of the major tectonic features of West Antarctica. It extends from the Trinity Peninsula and the South Shetland Islands in the north to Alexander Island and Palmer Land in the south, a distance of c. 1300 km, and was related to east-directed subduction beneath the continental margin. Thicknesses of exposed volcanic rocks are up to c. 1.5 km, and the terrain is highly dissected by erosion and heavily glacierized. The arc was active from Late Jurassic or Early Cretaceous times until the Early Miocene, a period of climate cooling from subtropical to glacial. The migration of the volcanic axis was towards the trench over time along most of the length of the arc. Early volcanism was commonly submarine but most of the volcanism was subaerial. Basaltic–andesitic stratocones and large silicic composite volcanoes with calderas can be identified. Other rock associations include volcaniclastic fans, distal tuff accumulations, coastal wetlands and glacio-marine eruptions.
Other groups of volcanic rocks of Jurassic age in Alexander Island comprise accreted oceanic basalts within an accretionary complex and volcanic rocks erupted within a rift basin along the continental margin that apparently predate subduction.
- Alexander Island
- andesites
- Antarctic Peninsula
- Antarctica
- basalts
- Cenozoic
- continental margin
- Cretaceous
- dates
- eruptions
- Gondwana
- Graham Land
- igneous rocks
- Jurassic
- King George Island
- Lower Cretaceous
- Mesozoic
- Miocene
- Neogene
- outcrops
- paleoenvironment
- plate tectonics
- rifting
- Scotia Sea Islands
- siliceous composition
- South Shetland Islands
- subduction
- tectonics
- Tertiary
- Upper Jurassic
- volcanic rocks
- volcaniclastics
- volcanology
- West Antarctica
- Elephant Island
- Smith Island
- LeMay Group
- Fossil Bluff Group
- volcanic arcs