Skip to Main Content
Skip Nav Destination

The historical view of an equable Jurassic greenhouse world has been challenged by recent studies documenting recurrent alternation between contrasting climate modes. Cooling of high-latitudinal areas may have been caused by orogenic processes at the northern margin of the Tethys Ocean that reduced heat transport towards the polar regions. Warm phases correlate to periods of intensified volcanism. The Jenkyns Event occurred during the transition from a late Pliensbachian icehouse into an early Toarcian greenhouse. Parallel evolution of different environmental processes, including sea level, climate and carbon cycle, indicate a causal mechanism tied to astronomical forcing. Insolation-controlled variations in the extent of the cryosphere (ice caps and permafrost) facilitated orbitally paced sea-level cycles via waxing and waning of the polar ice caps, and negative carbon isotope excursions via the release of cryosphere-bound 12C-enriched carbon. This review and synthesis of sedimentological, geochemical and palaeontological palaeoenvironment indicators, and of simulations from climate models, aims to reconstruction, in particular, the high-latitudinal environmental conditions of late Pliensbachian–early Toarcian times. Focus is laid on the extent of the regions that were potentially suitable for hosting a cryosphere. An environmental response to cryosphere dynamics is considered to have been a key component of the Jenkyns Event.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal