Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments
This volume focuses on underwater or subaqueous landslides with the overarching goal of understanding how they affect society and the environment. The new research presented here is the result of significant advances made over recent years in directly monitoring submarine landslides, in standardizing global datasets for quantitative analysis, constructing a global database and from leading international research projects. Subaqueous Mass Movements demonstrates the breadth of investigation taking place into subaqueous landslides and shows that, while events like the recent ones in the Indonesian archipelago can be devastating, they are at the smaller end of what the Earth has experienced in the past. Understanding the spectrum of subaqueous landslide processes, and therefore the potential societal impact, requires research across all spatial and temporal scales. This volume delivers a compilation of state-of-the-art papers covering topics from regional landslide databases to advanced techniques for in situ measurements, to numerical modelling of processes and hazards.
A workflow for the rapid assessment of the landslide-tsunami hazard in peri-alpine lakes
-
Published:June 11, 2020
-
CiteCitation
Michael Strupler, Flavio S. Anselmetti, Michael Hilbe, Katrina Kremer, Stefan Wiemer, 2020. "A workflow for the rapid assessment of the landslide-tsunami hazard in peri-alpine lakes", Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments, A. Georgiopoulou, L. A. Amy, S. Benetti, J. D. Chaytor, M. A. Clare, D. Gamboa, P. D. W. Haughton, J. Moernaut, J. J. Mountjoy
Download citation file:
- Share
Abstract
Although lake tsunamis constitute a rare peril, they have repeatedly occurred in peri-alpine lakes in the past. There are several documented historical examples of landslide-triggered tsunamis in Swiss lakes. However, fundamental information and workflows to rapidly quantify the lacustrine tsunami hazard for multiple lakes are missing so far. The fact that the shorelines of major peri-alpine lakes are densely populated underlines the need for a hazard assessment. Detailed assessments require high-resolution geophysical, geotechnical and sedimentological data, and considerable computation time. Due to the involved data acquisition and calculation efforts, such assessments are mainly conducted as detailed case studies for single lakes. We present a workflow for a rapid first-order estimation of the landslide-triggered tsunami hazard along the shores of peri-alpine lakes. A crucial step is the identification of potential tsunami sources. Unstable slopes are mapped automatically, based on parameters that are derived from past studies. Such parameters include the bathymetry and derived parameters, and type, characteristics and thickness of the sediments. Wave amplitudes are estimated with existing predictive equations, based on the constructed maps of potentially unstable slopes. The results may be used for focusing more detailed, lake-specific tsunami-hazard assessments in respective areas.