Fold and Thrust Belts: Structural Style, Evolution and Exploration
The outer parts of collision mountain belts are commonly represented by fold and thrust belts. Major advances in understanding these tectonic settings have arisen from regional studies that integrate diverse geological information in quests to find and produce hydrocarbons. Drilling has provided tests of subsurface forecasts, challenging interpretation strategies and structural models. This volume contains 19 papers that illustrate a diversity of methods and approaches together with case studies from Europe, the Middle East and the Asia-Pacific region. Collectively they show that appreciating diversity is key for developing better interpretations of complex geological structures in the subsurface – endeavours that span applications beyond the development of hydrocarbons.
Syn-kinematic strata influence the structural evolution of emergent fold–thrust belts
-
Published:April 14, 2020
Abstract
Whether thrusts are ramp-dominated and form imbricate fans or run out onto the syn-orogenic surface, forming ‘thrust-allochthons’, is governed by the activity of secondary ‘upper’ detachments along the syn-orogenic surface, activations of which are inhibited by syn-kinematic sedimentation at the thrust front. In the northern Apennines, where thrust systems are ramp-dominated and form an emergent imbricate fan, syn-kinematic sedimentation was abundant and accumulated ahead and above each thrust. In the southern Apennines, the far-travelled Lagronegro allochthon achieved its high displacements (>65 km) while the foredeep basin received little sediment. The imbricate fan at the front of the main Himalayan arc developed within a foredeep that experienced high rates of syn-kinematic sedimentation. In contrast, further west, the Salt Range Thrust emerged into a distal, weakly developed foredeep with significantly reduced rates of sediment accumulation. Displacements were strongly localized onto this thrust (c. 25 km displacement) which activated an upper detachment along the syn-orogenic surface. It is an arrested thrust-allochthon. Lateral variations into the adjacent, ramp-dominated but still salt-detached, Jhelum fold-belt are marked by increases in syn-kinematic sedimentation. As sedimentation styles can vary in space and time, individual thrusts and thrust systems can evolve from being allochthon prone to imbricate dominated.
- allochthons
- Apennines
- Asia
- Basilicata Italy
- cross sections
- Europe
- faults
- fold and thrust belts
- Himalayas
- Indian Peninsula
- Italy
- kinematics
- Northern Apennines
- Pakistan
- Po Valley
- Potwar Plateau
- Punjab Pakistan
- Salt Range
- sedimentation
- sedimentation rates
- Southern Apennines
- Southern Europe
- spatial variations
- stratigraphic units
- syntectonic processes
- tectonics
- thrust faults
- Lagonegro Allochthon