Geological Hazards in the UK: Their Occurrence, Monitoring and Mitigation – Engineering Group Working Party Report
CONTAINS OPEN ACCESS
The UK is perhaps unique globally in that it presents the full spectrum of geological time, stratigraphy and associated lithologies within its boundaries. With this wide range of geological assemblages comes a wide range of geological hazards, whether they be geophysical (earthquakes, effects of volcanic eruptions, tsunami, landslides), geotechnical (collapsible, compressible, liquefiable, shearing, swelling and shrinking soils), geochemical (dissolution, radon and methane gas hazards) or georesource related (coal, chalk and other mineral extraction). An awareness of these hazards and the risks that they pose is a key requirement of the engineering geologist.
The Geological Society considered that a Working Party Report would help to put the study and assessment of geohazards into the wider social context, helping the engineering geologist to better communicate the issues concerning geohazards in the UK to the client and the public. This volume sets out to define and explain these geohazards, to detail their detection, monitoring and management and to provide a basis for further research and understanding.
Chapter 9 Peat hazards: compression and failure
-
Published:June 09, 2020
Abstract
Peat is a highly compressible geological material whose time-dependent consolidation and rheological behaviour is determined by peat structure, degree of humification and hydraulic properties. This chapter reviews the engineering background to peat compression, describes the distribution of peat soils in the UK, provides examples of the hazards associated with compressible peat deposits and considers ways these hazards might be mitigated. Although some generalizations can be made about gross differences between broad peat types, no simple relationship exists between the magnitude and rate of compression of peat and loading. Based on examples described here, land failures resulting from peat compression are locally generated, but due to the sensitive nature of peat these can result in runaway failures that pose great risk. Understanding the geological hazards associated with compressible peat soils is challenging because peat is geotechnically highly variable and the mapped extent of peat in the UK is subject to considerable error due to inconsistencies in the definition of peat. Mitigating compression hazards in peat soils is therefore subject to considerable uncertainty; however, a combination of improved understanding of the properties of compressible peat, better mapping and land use zoning, and appropriate construction will help to mitigate risk.
- bulk density
- compressibility
- consolidation
- engineering properties
- Europe
- failures
- Galway Ireland
- geologic hazards
- humification
- Ireland
- land subsidence
- landslides
- loading
- mass movements
- mires
- mitigation
- natural hazards
- peat
- peatlands
- sediments
- soil mechanics
- United Kingdom
- water content
- Western Europe
- Derrybrien Ireland