Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources
The solid rock mass of Sweden forms a natural field laboratory revealing insight into the westward growth and reworking of one of the planet's ancient continental nuclei. Three major geological units are exposed in different parts of the country: the western part of the Fennoscandian Shield, mainly sedimentary rocks deposited on this crystalline rock mass and the Caledonide orogen. This volume synthesizes the tectonic evolution of Sweden over more than 2500 million years from the Neoarchean to the Neogene. Following an introduction describing the lithotectonic framework of the country and the organization of the volume, the tectonic evolution is addressed essentially chronologically. Different phases of intracratonic rifting, accretionary orogeny, continent–continent collisional orogeny and platformal sedimentation are identified. Sweden is one of Europe's major suppliers of metals, and the country's mineral resources are also presented in the context of the lithotectonic framework. Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources has been designed to interest a professional geoscientific audience and advanced students of Earth Sciences.
Chapter 17: Accretionary orogens reworked in an overriding plate setting during protracted continent–continent collision, Sveconorwegian orogen, southwestern Sweden
-
Published:January 03, 2020
-
CiteCitation
Michael B. Stephens, Carl-Henric Wahlgren, 2020. "Accretionary orogens reworked in an overriding plate setting during protracted continent–continent collision, Sveconorwegian orogen, southwestern Sweden", Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources, M. B. Stephens, J. Bergman Weihed
Download citation file:
- Share
Abstract
The Eastern Segment in the Sveconorwegian orogen, southwestern Sweden, is dominated by 2.0–1.8, 1.7 and 1.5–1.4 Ga crust; and the overlying Idefjorden terrane by 1.6–1.5 Ga crust. Assuming reorganization of a subduction system prior to 1.5–1.4 Ga and applying a sinistral transpressive component of disruption during the subsequent Sveconorwegian orogeny (1.1–0.9 Ga), the Idefjorden terrane is inferred to be indigenous outboard rather than exotic with respect to the continental plate Fennoscandia (Baltica). The geological record then records successive westwards shift of accretionary orogens along a convergent plate boundary for at least 500 million years. Sveconorwegian foreland-younging tectonic cycles at c. 1.05 (or older)–1.02 Ga (Idefjorden terrane) and at c. 0.99–0.95 Ga (Eastern Segment) prevailed. Crustal thickening and exhumation during oblique convergence preceded migmatization, magmatic activity and a changeover to an extensional regime, possibly triggered by delamination of continental lithosphere, in each cycle. Convergence after 0.95 Ga involved antiformal doming with extensional deformation at higher crustal levels (Eastern Segment) and continued magmatic activity (Idefjorden terrane). An overriding plate setting is inferred during either accretionary orogeny or, more probably, protracted continent–continent collision. Continuity of the erosional fronts in the Grenville and Sveconorwegian orogens is questioned.