Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources
The solid rock mass of Sweden forms a natural field laboratory revealing insight into the westward growth and reworking of one of the planet's ancient continental nuclei. Three major geological units are exposed in different parts of the country: the western part of the Fennoscandian Shield, mainly sedimentary rocks deposited on this crystalline rock mass and the Caledonide orogen. This volume synthesizes the tectonic evolution of Sweden over more than 2500 million years from the Neoarchean to the Neogene. Following an introduction describing the lithotectonic framework of the country and the organization of the volume, the tectonic evolution is addressed essentially chronologically. Different phases of intracratonic rifting, accretionary orogeny, continent–continent collisional orogeny and platformal sedimentation are identified. Sweden is one of Europe's major suppliers of metals, and the country's mineral resources are also presented in the context of the lithotectonic framework. Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources has been designed to interest a professional geoscientific audience and advanced students of Earth Sciences.
Chapter 16: Polyphase (1.6–1.5 and 1.1–1.0 Ga) deformation and metamorphism of Proterozoic (1.7–1.1 Ga) continental crust, Idefjorden terrane, Sveconorwegian orogen
-
Published:January 03, 2020
-
CiteCitation
Ulf Bergström, Michael B. Stephens, Carl-Henric Wahlgren, 2020. "Polyphase (1.6–1.5 and 1.1–1.0 Ga) deformation and metamorphism of Proterozoic (1.7–1.1 Ga) continental crust, Idefjorden terrane, Sveconorwegian orogen", Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources, M. B. Stephens, J. Bergman Weihed
Download citation file:
- Share
Abstract
Crust generated during an accretionary orogeny at 1.66–1.52 Ga (Gothian), and later during crustal extension at c. 1.51–1.49, c. 1.46, c. 1.34–1.30 Ga and after c. 1.33 Ga, dominate the Idefjorden terrane. Metamorphism under greenschist to, locally, high-pressure granulite facies, emplacement of syn-orogenic pegmatite and granite, and polyphase deformation followed at 1.05–1.02 Ga (Agder tectonothermal phase, Sveconorwegian orogeny). Sinistral transpressive deformation, including foreland-directed thrusting, preceded top-to-the-west movement and large-scale open folding along north–south axial trends during the younger orogeny. Crustal extension with emplacement of dolerite and lamprophyre dykes, norite–anorthosite, and a batholithic granite took place at c. 0.95–0.92 Ga (Dalane phase, Sveconorwegian orogeny). Ductile shear zones divide the Idefjorden terrane into segments distinguished by the character of the Gothian crustal component. Orthogneisses with c. 1.66 and c. 1.63–1.59 Ga protoliths occur in the Median segment; c. 1.59–1.52 Ga gneissic intrusive rocks and 1.6 Ga paragneisses with relicts of Gothian deformation and migmatization at c. 1.59 Ga and at c. 1.56–1.55 Ga occur in the Western segment. Mineral resources include stratabound Cu–Fe sulphides hosted by sandstone deposited after c. 1.33 Ga, and polymetallic quartz vein mineralization locally containing Au.
- continental crust
- crust
- deformation
- Europe
- facies
- faults
- granites
- granulite facies
- greenschist facies
- high pressure
- igneous rocks
- metamorphic rocks
- metamorphism
- orogeny
- plutonic rocks
- polyphase processes
- Precambrian
- pressure
- Proterozoic
- Scandinavia
- shear zones
- Sveconorwegian Orogeny
- Sweden
- upper Precambrian
- Western Europe
- Gothian
- Idefjorden Terrane