Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources
The solid rock mass of Sweden forms a natural field laboratory revealing insight into the westward growth and reworking of one of the planet's ancient continental nuclei. Three major geological units are exposed in different parts of the country: the western part of the Fennoscandian Shield, mainly sedimentary rocks deposited on this crystalline rock mass and the Caledonide orogen. This volume synthesizes the tectonic evolution of Sweden over more than 2500 million years from the Neoarchean to the Neogene. Following an introduction describing the lithotectonic framework of the country and the organization of the volume, the tectonic evolution is addressed essentially chronologically. Different phases of intracratonic rifting, accretionary orogeny, continent–continent collisional orogeny and platformal sedimentation are identified. Sweden is one of Europe's major suppliers of metals, and the country's mineral resources are also presented in the context of the lithotectonic framework. Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources has been designed to interest a professional geoscientific audience and advanced students of Earth Sciences.
Chapter 5: Paleoproterozoic (1.9–1.8 Ga), syn-orogenic magmatism and sedimentation in the Ljusdal lithotectonic unit, Svecokarelian orogen
-
Published:January 03, 2020
-
CiteCitation
Karin Högdahl, Stefan Bergman, 2020. "Paleoproterozoic (1.9–1.8 Ga), syn-orogenic magmatism and sedimentation in the Ljusdal lithotectonic unit, Svecokarelian orogen", Sweden: Lithotectonic Framework, Tectonic Evolution and Mineral Resources, M. B. Stephens, J. Bergman Weihed
Download citation file:
- Share
Abstract
Ductile shear zones with dextral transpressive deformation separate the Ljusdal lithotectonic unit from the neighbouring units (Bothnia–Skellefteå and Bergslagen) in the 2.0–1.8 Ga Svecokarelian orogen. Sedimentation steered by regional crustal extension at c. 1.86–1.83 Ga was sandwiched between two separate phases of ductile strain with crustal shortening and predominantly high-grade metamorphism with plutonic activity. Metamorphism occurred under low-pressure, medium- to high-temperature conditions that locally reached granulite facies. The earlier shortening event resulted in the accretion of outboard sedimentary and c. 1.89 Ga volcanic rocks (formed in back- or inter-arc basin and volcanic arc settings, respectively) to a continental margin. Fabric development (D1), the earlier phase of low-pressure and variable temperature metamorphism (M1) and the intrusion of a predominantly granitic to granodioritic batholith with rather high εNd values (the Ljusdal batholith) occurred along this active margin at 1.87–1.84 Ga. Thrusting with westerly vergence, regional folding and ductile shearing (D2–3), the later phase of low-pressure and variable temperature metamorphism (M2), and the subsequent minor shear-related intrusion of granite, again with relatively high εNd values, prevailed at 1.83–1.80 Ga. Mineral deposits include epithermal Au–Cu deposits hosted by supracrustal rocks, V–Fe–Ti mineralization in subordinate gabbro and norite bodies inside the Ljusdal batholith, and graphite in metasedimentary rocks.
- copper ores
- Europe
- faults
- gold ores
- high-grade metamorphism
- igneous rocks
- magmatism
- metal ores
- metamorphic rocks
- metamorphism
- metasedimentary rocks
- mineral resources
- mineralization
- orogeny
- Paleoproterozoic
- plate tectonics
- plutonic rocks
- Precambrian
- Proterozoic
- Scandinavia
- sedimentation
- shear zones
- Svecofennian Orogeny
- Sweden
- tectonics
- upper Precambrian
- volcanic rocks
- Western Europe
- Ljusdal Unit